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Abstract. The ubiquity of sequences in many domains enhances significant recent in-
terest in sequence learning, for which a basic problem is how to measure the distance
between sequences. Dynamic time warping (DTW) aligns two sequences by nonlin-
ear local warping and returns a distance value. DTW shows superior ability in many
applications, e.g. video, image, etc. However, in DTW, two points are paired essen-
tially based on point-to-point comparisons without considering the autocorrelation of
sequences. Thus, points with different semantic meanings, e.g. peaks and valleys, may
be matched providing their coordinate values are similar. As a result, DTW may be
sensitive to noise and poorly interpretable. This paper proposes an improved alignment
method dynamic state warping (DSW). DSW integrates the dynamic information of
sequences into DTW by converting each time point into a latent state. Alignment is
performed by using the state sequences. Thus DSW is able to yield alignment that is
semantically more interpretable than that of DTW. Using one nearest neighbor clas-
sifier, DSW shows significant improvement on classification accuracy in comparison to
ED (68/85 wins), DTW (70/85 wins) and its variants. We also empirically demonstrate
that DSW is more robust and scales better to long sequences than ED and DTW.
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1. Introduction

Sequences are generated and analyzed in almost every domain of human society
such as patient treatment [1], medical [2], engineering [3], entertainment [4], etc.
Computing the distance between sequences is critical to classification and has
attracted significant research interest [5–8].

For sequence classification, one nearest neighbor (1NN) classifier has been
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Fig. 1. DTW alignment of the GunPoint dataset. The sequences present three
stages clearly, i.e. raising a hand, pointing, and putting down the hand. DTW is
unable to find the discriminative features between two sequences ([20∼40] and
[120∼140]). We also observe a severe distortion that DTW matches one point on
the upside sequence to almost the whole subsequence of the downside sequence.

empirically shown to be a strong solution with proper distance measurements
[9–11]. 1NN classifier is intrinsically parameter-free. In this case, the only concern
is how to measure the distance between sequences properly [12].

Note that sequences are different from typical vectorial data. Sequences are
high dimensional, auto-correlated among temporal axes and possibly of varying
length. Therefore, to measure the distance between sequences, consideration has
to be given to the properties of sequences, such as nonlinear local warping, phase
shift and scaling distortion etc. A more comprehensive review can be found
in [12].

Dynamic time warping (DTW) [13, 14] is to compute the distance between
two sequences by warping them locally to the same length. It allows one-to-many
mappings between sequences to “stretch” a sequence or many-to-one mappings
to “condense” a sequence. In this way, DTW is naturally compatible with phase
distortion invariance of sequential data [12]. Despite the simplicity of DTW, 1NN
classifier with DTW distance has been very successful in many applications, such
as video, image, and audio etc. [11, 15, 16]. It has been a consensus that DTW
may be the strongest distance measurements for sequences [17, 18].

DTW aligns two sequences by taking the point-to-point comparison of coor-
dinate values as a fundamental unit [18]. Concretely, one point on a sequence is
compared to all or a subset (also known as the warping window [11]) of points
on the other sequence to compute a point level distance. In doing so, one can
find an alignment path such that the aligned sequences yield a globally minimum
distance [13], which is returned as the distance between the original sequences.
However, this point-level comparison usually cannot provide dynamic evidence
for matching two points. Note that from a human’s intuition, we intend to pair
two points of two sequences by taking into account the nearby points or even
the global structure. Thus, DTW does align globally but is unable to take the
auto-correlated structure information into consideration properly [10]. This could
make DTW brittle to noise [14,19], which is also demonstrated in our experiment
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Fig. 2. DSW alignment of the GunPoint dataset. The alignment of DSW is
semantically more sensible than that of DTW. The discriminative features, i.e.
having a gun or not, is detected.

(Section 4). As pointed out in [10, 20], DTW usually has weak interpretability
of its alignment. Concretely, the alignment result may lack local semantic mean-
ings. For example, DTW may match points on a local peak and a valley if their
Euclidean distance (or other p-norm distances) is small. Besides, DTW may
match one point to too many points resulting in un-intuitive alignment results
and degrade the classification performance [3]. This problem can be alleviated
by constraining the possible alignments. However, “correct” alignment may be
prevented from being found.

Figure 1 illustrates the DTWmatch result of the GunPoint dataset from UCR
time series archive [21]. The two sequences are from two different classes. Briefly
speaking, GunPoint dataset contains two classes of motion track sequences be-
haved by both an actress and an actor. Each motion includes three processes:
raising a hand, pointing, and putting down the hand. For the first class, there is
a gun in the hand. For the second class, there is no gun. In time points roughly
ranging in [20∼ 40] and [120∼ 140], the two sequences differ slightly by whether
the actress/actor takes a gun or not. According to Figure 1, DTW fails to capture
this difference, and it returns nearly “perfect” alignment for two semantically d-
ifferent sequences. Besides, it is shown that DTW un-intuitively maps one point
to many points on the other sequence 1.

Time points of a sequence have dependencies over the time axis, which pro-
vides latent regime characterizing the dynamic behavior. DTW is unable to take
into consideration this autocorrelation information. To mitigate the problem with
DTW and motivated by the advance of representation learning, in this paper,
we propose an improved sequence alignment algorithm, dynamic state warping
(DSW). DSW provides a simple but flexible solution for the above problem. DSW
efficiently converts time points on a sequence into the corresponding hidden s-
tates, which has integrated characteristics of the past history and the current

1 Since our concern is the effectiveness of incorporating the dynamics into time point repre-
sentation instead of the parameter tuning procedure, this motivates us to compare DSW and
DTW both without constraining the size of the warping window parameter.
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point. In this way, the state evolving sequence may be “aware” of the sequential
order information and encodes the generating mechanism of original sequences.
A dynamic programming technique is employed to align the state sequences in-
stead of the temporal points. Therefore, DSW is prone to match time points
with similar states together.

The time complexity of the state converting process for two given sequences
of length LQ and LC is O(LQ + LC). The alignment process is of O(LQLC)

2

time complexity. Then the overall cost is O(LQLC), at the same level as that of
DTW.

Our method has several advantages: (1) DSW explicitly takes advantages
of the autocorrelation structure characteristics of sequential data. It provides
versatile and flexible discriminative state representations for sequences; (2) The
alignment result of DSW is semantically more interpretable than plain DTW;
(3) Using one nearest neighbor classifier, DSW exhibits lower error rates than
DTW on most datasets; (4) The flexibility of DSW allows users to fine tune the
representations of sequences to capture the discriminative features for specific
tasks; (5) DSW is able to deal with univariate and multivariate sequences without
adjusting the algorithm. (6) DSW shows more robustness to noise and more
suitable for long sequences than compared methods; (7) After obtaining the state
sequences, the alignment is performed by DTW, thus advanced techniques [11,22]
for improving the effectiveness and efficiency of DTW is also compatible with
DSW.

As a comparison, Figure 2 demonstrates the alignment result of DSW on
GunPoint dataset. The parameters of DSW are determined randomly. It is no-
ticeable that DSW is able to match two sequences correctly and consistently
with the three true actions. The result demonstrates that DSW is beneficial to
reduce the sensitiveness of warping window parameter.

Our contributions in this work include: (1) We propose to integrate the dy-
namic information into the DTW. This algorithm provides more interpretable
and accurate alignments by taking advantage of the dynamic information of
sequences. (2) By combining with one nearest neighbor classifier, our method
achieves significantly better classification results than that of DTW. (3) We per-
form extensive experiments comparing DSW with Euclidean distance (ED) and
DTW. We also empirically analyze the related properties of the state converting
component of DSW extensively. (4) Our strategy provides a general framework
and could incorporate other temporal filters into DTW. In addition, it is possible
to incorporate discriminative learning and representation learning techniques.

The rest of this paper is organized as follows: in Section 2, we introduce
preliminary knowledge about time series classification, DTW, and related work
about reservoir computing; in Section 3, we introduce DSW in detail; Section
4 performs extensive experiments to evaluate DSW; finally, Section 5 concludes
this paper.

2 By employing constraints on the alignment, the complexity of DTW alignment could be
linear [11]. In this paper, we focus on the effectiveness of distance measurement based on
states of time points, instead of the original time points. To ease the comparison, we will not
consider constraint strategy. But it is straightforward to incorporate alignment constraints in
DSW.
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Fig. 3. Illustration of Euclidean distance.

2. Background and Related Work

In this section, we first clarify some notations and basic knowledge about se-
quence learning. Then we introduce the DTW algorithm in detail. Since our
method is based on reservoir computing, we introduce reservoir computing at
last.

2.1. Sequence Distance

A sequence is a series of observations for at least one variable. We use a matrix
X = [x1, x2, · · · , xLX ]T ∈ RLX×d to denote a sequence, where xi ∈ Rd×1(i ∈
[1, LX ]) is an observation at a time point indexed by i, LX is the length of series
X and d is the number of variables. Each sequence is associated with a label y.
The task of classification is to learn a function mapping from X to y.

Given two sequences Q and C, if they are of equal length, one can easily
compute their distance using Euclidean distance (ED) or p-norm distance [23],

such as ED(Q,C) =
√

∑L
i=1

∑d
j=1((q

i,j − ci,j)2). This kind of distance is also

called lock-step distance since it matches elements of sequences according to their
positions (See Figure 3).

However, in most real-world applications, sequences may be of varying length.
In this case, elastic distance, such as DTW and longest common subsequence [17]
etc., is used to calculate the distance.

2.1.1. Dynamic Time Warping

Given two sequences Q and C of possibly different lengths, DTW stretches or
condenses two sequences to the same length. DTW allows nonlinear local warping
to take into account possible distortions. It finds an optimal alignment between
Q and C such that the accumulative Euclidean distance is minimized [14]. In
doing so, it returns a distance value that measures the similarity between the
two sequences.

Denote D ∈ RLQ×LC as the distance matrix of time points of Q and C.
DTW algorithm travels from the position [1, 1] to position [LQ, LC ] of D to find
a sequence of indices A and B of the same length l ≥ max{LQ, LC} such that

the cumulative distance
∑l

i=1 DAi,Bi
is minimized. In this way, the point A(i)

of sequence Q is matched with the point B(i) of sequence C. See Figure 4 for an
illustration.

To be a valid alignment, the paths A and B have to satisfy three constraints:

1. A(1) = 1, B(1) = 1
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Fig. 4. Illustration of searching for the optimal alignment using DTW. The two
sequences are demonstrated on the left and bottom. The point-wise distance
matrix and the optimal alignment path are presented.

2. A(l) = LQ, B(l) = LC

3. ∀i ∈ [1, l − 1], (A(i+ 1), B(i+ 1))− (A(i), B(i)) = {(0, 1), (1, 0), (1, 1)}

Hence, the alignment of two sequences should start from the first time point
and end with the last point. Each time point has at least one matching point on
the other sequence. The match increases monotonically.

Formally, denote α ∈ {0, 1}l×LQ and β ∈ {0, 1}l×LC be two warping matrices
corresponding to the warping path A and B. Let α(i, A(i)) = 1, β(i, B(i)) = 1,
where i ∈ {1, 2, · · · , l}. All other entries are zero. In this case the two warped se-
quences become α×Q and β×C. The overall cost function of DTW is generalized
as:

Cost = arg min
l,A,B

(
l

∑

i=1

DAi,Bi
) = arg min

l,α,β

p
√

(α×Q− β × C)p (1)

Therefore, DTW is essentially p-norm distance [24] except that local distortion is
allowed. The above cost function can be solved with time complexity O(LQLC)
using dynamic programming:

Cost(m,n) = D(m,n) + min

{

D(m− 1, n),
D(m− 1, n− 1),
D(m,n− 1)

}

2.1.2. Related Work

Numerous trials have been made to enhance DTW, which can be roughly divid-
ed into two categories: adjusting the point-wise distance (e.g. [14, 15, 25]) and
heuristically constraining the DTW (e.g. [12, 22]).

Garreau et al. [25] propose to learn a distance metric for measuring the
similarity between two points. This method takes the difference between the
empirical alignment and true alignment as the cost function. However, the true
alignments among sequences are not available for many real-world applications.
Besides, it is only feasible for multivariate sequence alignment. Zhou et al. [15]
combined DTW with canonical correlation analysis (CCA), termed canonical
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time warping (CTA). The point-wise distance is linearly transformed by CCA.
CTA alternatively optimizes the CCA and DTW alignment to minimize the ac-
cumulative distance. However, CTA is only applicable for multivariate sequences.
The objective function of CTW is non-convex and may return local minima.

In [26], Petitjean et al. propose to replace multiple sequences with an average

sequence T̂ = argminT̂ {DTW (Ti, T̂ )}
N
i=1 using the DTW distance. But it does

not have a contribution to improving the alignment of DTW algorithm. Keogh
and Pazzani [14] propose to replace the coordinator distances by the derivative
distance (DDTW). Therefore, points with similar changing trend are matched.
Jeong et al. [22] propose to weight the match of two points by the length of stretch
such that the long shift is penalized (WDTW). Batista et al. [12] propose a
similar penalty-based distance. That method additionally considers a coefficient
on top of the DTW distance in order to avoid small distance between sequences
of different complexity (CID-DTW). Like DTW, DDTW, WDTW, and CID-
DTW still have the limitation in considering the sequential nature of data. In
[27, 28], the DTW distance among sequences is employed as the features for
further classification. Other studies focus on improving the efficiency of DTW [11]
but do not improve the alignment results of DTW.

Our method DSW is similar to methods adjusting the point-wise distance.
But DSW is different from previous methods in that DSW is able to utilize the
sequential dynamic information of sequences. From Equation (1), it is clear that
given the distance matrix D, the basic subroutine of DTW is the point-wise Eu-
clidean distance of temporal axis coordinate values. The point-to-point distance
ignores local autocorrelation structure information. This is the key bottle-neck
of the classification performance of DTW. In this paper, we are going to offer
a remedy by taking advantage of the memory ability of recurrent networks to
learn a state representation for each time point. The alignment is performed in
the state space of sequences instead of the time domain.

2.2. Reservoir Computing Models

Recurrent neural network (RNN) takes account of the past input history and
the current input at each time point. This recursive nature makes it useful in
preserving the autocorrelation structure of sequential data, such as language
modeling [29], sequence analysis [5] and video processing [4] etc.

Reservoir computing model [30] is a kind of RNNs having a fixed randomly
generated state transition modular, called the reservoir, and a trainable readout
layer. The reservoir provides dynamic features of input series and the readout
is trained to generate desired outputs by assembling reservoir features. Popular
reservoir computing models include Echo State Network (ESN) [31] and Liquid
State Machine [32] etc.

In [3,6,7,33], the readout weights of the ESN are proved to be able to extract
discriminative features from the whole sequence. The time series distance is
calculated as the distance of the readout mappings [3, 6, 7]. Similarly, Fisher
kernel [34] learns vectorial Fisher score as a representation for the whole sequence
using a probabilistic generative model e.g. HMM. Fisher kernel assumes that
similar objects stretch the generative model parameters to a similar extent. In
Fisher kernel, all the sequences have to be approximated by only one generative
model, which seems restrictive.

This current work employs the ESN to capture the dynamics of sequences,
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which is different from previous studies [6, 7]. Our goal is to uncover the state
transition track by learning state space representations for each time points,
rather than a representation of the whole sequence [3, 34, 35].

DTW is commonly employed by comparing time points in the time domain
in previous sequence classification tasks. The comparison of raw time points may
make DTW sensitive to noise and weakly interpretable [10]. Numerous methods
have been proposed to improve the effectiveness or efficiency of DTW. Howev-
er, little prior work has contributed from the aspect of incorporating dynamic
features to enhance DTW for sequence classification.

As a remedy, in this work, we propose to learn temporal point representation-
s for sequences. Reservoir computing models are useful for handling sequential
data because of their implicit memory for learning compact hidden representa-
tions. The hidden representations preserved by the reservoir could be valuable
in providing DTW with dynamic information of sequences. We learn flexible
and versatile representations for each time point by using the reservoir network.
The integrated information in the time point representations provides discrim-
inative features. The proposed method makes use of the history information of
sequences to make the alignment semantically more sensible and provides better
classification accuracy in comparison with DTW.

3. Dynamic State Warping

3.1. Echo State Network

Sequences are structured objects that have correlations among different time
points. DTW finds an optimal alignment between two sequences so that the
cumulative distance is minimized. However, it has limitations in making use of
the dynamic information.

We propose an algorithm DSW as a mitigation. In particular, the mechanism
of DSW is a two-stage process.

First, to effectively incorporate the dynamic information into DTW, we pro-
pose to employ a nonlinear yet efficient dynamic system, i.e. Echo State Network
(ESN), as the general purpose temporal filter to convert the time points into la-
tent states in the ESN. In this way, we are able to obtain dynamic temporal
features, which could be more sensible descriptors for alignment. In the second
stage, the same alignment operation as that of DTW is performed to align the
state trajectory sequences.

Echo state network (ESN) is a kind of reservoir model. ESN is characterized
by a non-trainable high dimensional nonlinear dynamical reservoir and an effi-
ciently trained linear readout layer (usually by linear regression). The reservoir
learns a representation for each time point by taking into account the previous
input history and the current input. In a typical ESN, the reservoir is randomly
generated under the constraint of the maximum eigenvalue being less than one.
This is also called echo state property. Loosely speaking, it requires that the
initial inputs have little influence on the final state. It is usually implemented by
first normalizing the reservoir weight matrix to have a unitary spectral radius.
Then we multiply it with a scaling parameter. The readout layer assembles the
state space features of the reservoir to learn a function mapping from reservoir
states to the output sequence. Linear regression is usually employed to learn the
readout function.
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Fig. 5. Illustration for the CRJ reservoir network.

In this study, we are not going to count on the assembling ability of the
readout layer [6], but we will analyze its effect on the performance of DSW
in the experiment (See Section 4.4.3). The approximation ability of the ESN
reservoir helps leverage the autocorrelation of original sequences.

To justify the randomness of ESN, Rodan et al. [36] propose a topologically
fixed reservoir, cycle reservoir with jumps (CRJ). CRJ reservoir is more con-
strained than a typical ESN reservoir. It connects the reservoir neurons in a
unidirectional circle and allows fixed length jumps on the circle. In this case,
there are only three types of connections for CRJ reservoir, i.e. input, jump
and cyclic connections. The network weights can be determined by three values
r = {ri, rj , rc} for each kind of connection.

The motivations of choosing the reservoir network, especially the CRJ net-
work, as the adaptive temporal filter include:

(1) Reservoir models can provide parsimonious state representations for se-
quence points efficiently (O(N));

(2) Reservoir models are able to take advantage of the sequential dynamic
information of sequences.

(3) Reservoir models require much less effort to tune the network compared
with a typical RNN, which may require more data, training time, and could be
trapped in local optima;

(4) The CRJ reservoir network has been shown to be competitive or better
than conventional randomly constructed ESN [36].

3.2. The DSW Algorithm

This paper takes CRJ as the base model for ease of analysis. Figure 5 illustrates
the architecture of CRJ network. The mechanism of CRJ is generalized as:
{

S(t+ 1) = g(RS(t) +VX(t+ 1))

f(t) = gout(WS(t) + b)
(2)

where S(t) ∈ RN is the reservoir state, N is the number of neurons in the
reservoir; X(t) ∈ Rn is the input sequence, n is the number of input neurons;
R ∈ RN×N is the reservoir weight matrix, V ∈ RN×n is the input weight
matrix, W ∈ RO×N is the output weight matrix, b ∈ RO is the bias term, O
is the number of output neurons; g is the state transition function, which is a
nonlinear function and usually taken as tanh or the sigmoid function. gout is the
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Fig. 6. The semantic demonstration of the key idea of DSW. The CRJ reservoir
network converts the original sequences to state trajectory sequences. Then two
points are paired if their states are similar.

activation function of outputs. Without loss of generality, in this paper, we fix
g = tanh and gout as the identity function.

The DSW algorithm is demonstrated in Algorithm 1. Figure 6 gives an illus-
tration of the key idea of this paper.

Algorithm 1 Dynamic state warping

1: Input: Two sequences Q ∈ RLQ×d, C ∈ RLC×d; #neurons of the reservoir;
jump length of reservoir; initial parameters for network ({ri, rc, rj}) (Table
1).

2: Output: A distance between the two sequences.
3: Use the CRJ network to convert the original sequences into reservoir state

space according to Equation 2.
4: Compute state point level distance matrix D ∈ RLQ×LC .
5: Search the optimal warped path α and β using dynamic programming.
6: Return the accumulative distance (Equation (1)) as the distance between

two input sequences.

Given an input sequence X ∈ RLX×d, we first drive it through the non-
linear dynamic reservoir and obtain a state transition trajectory sequence S ∈
[−1, 1]LX×N , where N is the reservoir size, according to Equation (2). It trans-
forms from the previous state to a new state in the state space given a new input
time point. In this way, the temporal signal space sequence is converted into mul-
tivariate state space sequences. The state trajectory sequence encapsulates the
generating mechanism of the original sequence by taking into consideration the
previous state and current input. In particular, the reservoir state representation
is the activation of reservoir neurons with different driving input sequences. The
state space representations provide discriminative features with more versatility
and flexibility than original sequences.

We then employ DTW to align the state trajectory sequences as usual. It
prefers to align points on two sequences with similar states.

Therefore, the difference between DTW and DSW lies in that DTW uses
distance between time points as a subroutine, while DSW uses the distance of
the state space representations.

Since our concern in this paper is to learn point-level states as representations,
our framework can be naturally generalized to time-variant and time-invariant,
univariate and multivariate series, and employ different temporal filters.
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Proposition: The state sequence is able to scale the noise in the original
sequence by a constant scaling.

Proof: The state sequence is able to reduce the noise in the original signal
by constraining r2i . Given an additive noise ε in the sequence X , the distance
between the state sequences is then:

||Sε(t+ 1)− S(t+ 1)||2

= ||g(RS(t) +V(X(t) + ε))− g(RS(t) +VX(t))||2

≤ ||RS(t) +V(X(t) + ε)−RS(t)−VX(t)||2

= ||Vε||2 ≤ r2i ||ε||
2

where Sε is the noisy state sequence. The above equation reveals that the noise in
the state sequence is scaled by the input weight r2i . The nonlinear state transition
function g can be tanh or sigmoid function. Note that their derivative is not
larger than one, thus we have tanh(δ) ≤ δ. That is, the noise level is reduced in
the state sequence by adjusting ri (usually ri ≤ 1 in the typical ESN setting [33]).

In order to exploit the dynamic information in sequences, one might partition
the original sequences into short segments and employ the distance of segments as
a robust subroutine in DTW. This can also be viewed as a “kind” of smoothing
filter. However, the segmentation of time series requires additional efforts on
parameter selection and remains unclear how to segment the original time series
to maintain the long or short autocorrelation information. By employing the
ESN network, DSW is able to exploit the dynamic information of sequences
with a fading memory of the past input history. ESN inherits the benefits of
recurrent neural network keeping the appreciate dynamics and it maintains a low
computation complexity, which is the reason to use ESN instead of traditional
recurrent neural networks.

To integrate the dynamic information, one can of course resort to other noise
filters [37], such as Kalman filter [38] or low/high pass frequency filter [39], ac-
cording to the statistical characteristics, frequency, or distribution of sequences,
if one deems them useful. Actually, these filters are also dynamic systems and
comply with our framework. However, such knowledge about the error distri-
bution or other characteristics in the sequence is often not available or varies
among different subjects. For example, Kalman filter is only applicable to lin-
ear dynamic signals with Gaussian noise, which limits its application in many
real-world problems. Similarly, for the frequency-based filter, the mechanism of
incorporating the dynamic information is un-intuitive and may not generalize to
time series datasets with different characteristics.

The key idea of this paper is to represent each time point by employing a non-
linear dynamical system with fading memory as the general-purpose nonlinear
temporal filter. Providing the fixed general temporal filter is determined proper-
ly, each time point could be represented by encoding the generating mechanism
and short-term/long-term autocorrelation information of the time series, to re-
flect the dynamic behaviors. The employed general-purpose nonlinear adaptive
filtering could be suitable for a variety of time series datasets.

4. Experiment

In this section, we perform extensive experiments to evaluate our method. In
particular, this section is divided into three parts.
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Table 1. The parameter settings for DSW in our experiments. The parameters
are set following uniform distribution [36]. The spectral radius is the maximum
eigenvalue of the reservoir weight matrix [31,40] (Section 4.4.1). The input Dim
refers to the number of consecutive time points that are fed into the network
(Section 4.4.5).

{ri, rc, rj} J N Spectral Radius Input Dim

[0.01, 1] [2, N
2
] 5 0.85 2

1. The robustness is evaluated on synthetic noisy data. The scalability of long
series is tested by consistently increasing the length of sequences (subsection
4.2).

2. We evaluate DSW by the classification results on 85 UCR time series datasets
[21] in comparison with ED, DTW and other algorithms (subsection 4.3).

3. We analyze the related properties of our method to provide more insights into
DSW and its parameter sensitivity (subsection 4.4).

4.1. Experimental Setup

We compare DSW with Euclidean distance and DTW. Since our concern here
is the effectiveness of states as representations for time points, we do not re-
fine alignment constraints for dynamic programming process. However, since the
second stage of our method is intrinsically DTW, more advanced strengthen-
ing techniques for DTW, such as those proposed in [11] and [22], can be easily
incorporated. The sequences have been normalized to have zero mean and u-
nit standard deviation [11]. Without explicit mention, the reservoir of DSW
is randomly generated. The related parameters are set following Table. 1. The
generalization error [14, 21, 27, 37], i.e. the proportion of wrongly classified test
samples, is employed for evaluation.

4.2. Robustness and Scalability

4.2.1. Robustness

To evaluate the robustness of different distance measurements, we conduct ex-
periments varying the noise in the dataset. In detail, we choose 8 benchmark
datasets [21], as indicated in Figure 7. We add a Gaussian white noise into
these datasets with zero mean and standard deviation varying in the set {
0.1,0.3,0.5,0.7,0.9,1.1}. The standard deviation is set in this manner in order
to clearly present the tendency. On each noise level, we perform 10 runs and re-
port the average. The generalization error rate is computed using 1NN classifier
with the ED, DTW, and DSW.

The results are presented in Figure 7. It shows that DSW is more robust to
noise than compared methods. DSW consistently achieves smaller generalization
error rates than DTW on most datasets. DTW is sensitive to noise because its
basic unit is to compute the point-wise distance between time points and counts
heavily on the sequence shape during alignment. Yet, the Gaussian noise changes
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Fig. 7. The Generalization performance of Euclidean, DTW, and DSW distance
with 1NN classifier when facing noisy data. The result demonstrates that DSW
is more robust than Euclidean distance and DTW.

10 order NARMA sequences 20 order NARMA sequences

Fig. 8. Illustration of 10 order and 20 order NARMA synthetic sequences.

the magnitude of original sequences. This partially explains the noise sensitivi-
ty of DTW. Euclidean distance maintains intermediate performance. When the
noise level is low, Euclidean distance sometimes maintains slightly better per-
formance than DTW and DSW. We presume the small quantity of additive zero
mean Gaussian noise may have less influence on the lock-step distance than warp-
ing based distance if the time series if roughly aligned. For DTW and DSW, the
alignment may be influenced by the slight disturbance in this case.

4.2.2. Scalability to Long Sequences

In this section, we employ synthetic datasets containing varying length sequences
to evaluate the scalability of DSW.

In particular, we generate a series of 10 order and 20 order NARMA se-
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Fig. 9. The generalization trend of three distance measurements facing time series
of different length.

quences:

s(t+ 1) = 0.3s(t) + 0.05s(t)

9
∑

i=0

s(t− i) + 1.5u(t− 9)u(t) + 0.1

s(t+ 1) = tanh(0.3y(t) + 0.05y(t)

19
∑

i=0

y(t− i) + 1.5u(t− 19)u(t) + 0.01) + 0.2

where s(t) is the output sequence, u(t) is the input sequence and is generated in
the range [0,0.5] with uniform i.i.d. distribution. These two kinds of sequences are
generated using the same input sequence. The 10 order and 20 order NARMA
sequences are treated as two classes. The original sequences are illustrated in
Figure 8.

We use the NARMA model of 10 order and 20 order respectively, to generate
synthetic data with varying sequence length. This experiment aims to present
what will happen when sequence length is becoming longer and longer. In de-
tail, we generate 10 order and 20 order NARMA sequences of the length in
{5000,10000,20000,30000,40000,50000,100000}. For each length, a generated se-
quence is then divided into non-overlapping subsequences of equal length to
obtain 50 subsequences. We randomly select 25 sequences of 10 order and 25
sequences of 20 order as the training set of size 50. The rest 50 subsequences
are used as test set. We use the 1NN classifier to classify the test set using the
training set. For each length, the synthetic dataset is generated 10 times and the
classification is also repeated 10 times. The average generalization error rate is
collected as the final result.

Figure 9 demonstrates the performance of different distance measurements
in terms of varying sequence length. From Figure 9, we can make three main ob-
servations: (1) It shows that Euclidean distance scales poorly to long sequences.
When the sequence length exceeds 400, Euclidean distance begins to degrade
the generalization performance of the 1NN classifier. This result is as expect-
ed and consistent with our intuition that Euclidean distance is not suitable for
long series. (2) The performance of DTW initially improves when facing long
sequences. Its performance is much better than Euclidean distance. This result
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Fig. 10. The pairwise comparison of 1NN classification performance of DSW, ED,
DTW, cDTW, DDTW, WDTW and CID-DTW on 85 UCR time series datasets.
The numerical value at the bottom right means the number of wins/ties/losses
of DSW in comparison with a compared method on 85 datasets. It is observed
that DSW is better than compared methods on most datasets.

explains why DTW is so successful in sequence processing domains [9, 11]. Se-
quences are usually long and the time points are usually much larger than the
number of observations. However, when sequence length grows longer than 600
points, the performance of DTW begins to worsen. (3) Unlike the compared
distance measurements, DSW is consistently improving the performance in our
experiment.

4.3. Classification Performance on Benchmark Datasets

Datasets Our experiments are performed using the UCR time series datasets
[21]. The 85 UCR datasets [21] are collected from different domains such as
insect recognition, medicine, engineering, motion tracking, image and synthetic
data etc. The datasets have already been divided into training and test set. The
length of sequences varies from one dataset to another, with the minimum length
24 and maximum length 2709. In each dataset, the sequences are of equal length.
The size of datasets varies from 24 to 8926. The number of classes varies from 2
to 60. Detailed information about the datasets is available on the website [21].

Experiment Setup and Parameter settings Our results are averages
over 10 repetitions. In each repetition, the network is optimized by selecting
one network from 20 randomly initialized networks using leave-one-out cross
validation (LOOCV) on the training set. The parameter settings in Table 1 are
employed. This setup is applied to all datasets (as recommended in Table 1).

In our experiment, the network is selected in this arbitrary manner. Thus
the results may not be optimal for our method. We can of course design specific
networks for different datasets by using the result of subsections 4.4. We do not
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optimize the classification result by using more advanced strategy to simplify
operations. However, when dealing with real-world problems, one can of course
choose a better parameter setting using simple search strategies e.g. grid search.
For example, on BeetleFly dataset, we search the eigenspectra scaling using the
range reported in subsection 4.4.1 and improve the accuracy of DSW by 15%.
Indeed, our results show that even using the randomly generated reservoir and
our LOOCV strategy can yield surprisingly good results.

The Euclidean distance and DTW algorithm are determined thus only one
run is performed on each dataset.

Compared methods The seven compared method are:
(1) ED: The distance is calculated by Euclidean distance. The label of the

nearest neighbor of the query is returned as the prediction label.
(2) DTW: The distance is computed using DTW. The predicted label is

taken as the label of the nearest sequence in the training set.
(3) cDTW: cDTW learns the best warping window width on the training

data for DTW. The optimal window size for each UCR dataset can be found on
the website http://www.cs.ucr.edu/~eamonn/time_series_data/.

(4) DDTW [14]: The first order distance is calculated for DTW as in [14].
Points with similar derivative are more likely to be matched. DDTW can be
viewed as a kind of smoothing for original time points by employing the deriva-
tive. This motivates us to compare DSW with DDTW, because DSW can be
viewed as smoothing the original time points with the states of a nonlinear dy-
namical system.

(5) WDTW [22]: A multiplicative weight penalty is incorporated to re-
duce the warping degree. The distance between two points on two series is then
w|i−j|(Q

i − CJ )2. Following [22], we employ a logistic function for the weight,

i.e., wa = 1
1+g(a−L/2) , where a = 1, 2, · · · , L, L is the sequence length and g is

set on the training set.
(6) CID-DTW [12]: As indicated in [12], a complexity penalty is multiplied

on the original DTW distance to take into account the difference in the com-
plexity of two series. The warping window width of DTW distance employs the
optimal value.

(7) DSW: The training sequences are converted into state sequences using
a reservoir network. When a query sequence arrives, it is first converted into
the state sequence using the same network. The distance between the query
sequence and training sequences is computed by DTW using the state sequences.
The network parameters e.g. the connection weights, are initialized randomly
following Table 1.

Platform The experimental environment is Matlab 2015a on an Intel Pen-
tium Quad-Core G2120 3.10GHz CPU with 8GB RAM.

Using the parameter-free 1NN classifier enables us to compare the general-
ization error rates of DSW with compared algorithms in a pair-wise fashion. The
classification result on 85 UCR datasets is presented in Figure 10.

It is clear that our method achieves lower classification error rates than com-
pared methods. In detail, DSW achieves better performance on 68 out of 85
datasets than Euclidean distance. It has better performance on 70 datasets than
DTW. The number of wins/ties/losses of DSW compared with other methods on
all datasets is also reported in Figure 10. On most datasets, DSW can yield good
performance. Note that even though DSW does not have the warping window
constraint of cDTW, the derivative information of DDTW, the weight decay of

http://www.cs.ucr.edu/~eamonn/time_series_data/
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Fig. 11. Texas sharpshooter plot: expected performance gain on the training set
vs. actual performance gain on the test set. On most datasets, we can correctly
predict the performance of DSW. TP: performance gain on both training and test
set; TN: performance reduction on both training and test set; FN: performance
reduction on training set but performance gain on test set; FP: performance gain
on training set but performance reduction on test set. The FP region means that
DSW is over-optimistic about its performance and is not desired. We only observe
{4,7,6,4,12,10} datasets fall into the FP region for each compared methods.

WDTW or the complexity term of cDTW, DSW still achieve satisfactory per-
formance. One can of course add the warping window, derivative, weight decay
or the complexity term into the formation of DSW for better performance. Our
purpose here is to demonstrate that the states of the reservoir could provide
versatile representations for original time points.

Texas Sharpshooter Plot We have evaluated the performance of DSW
compared with Euclidean distance and DTW. The result is encouraging. Note
that, it would make no sense if we cannot know ahead of time whether DSW
will perform well on a given dataset [12]. For this purpose, we employ the Texas
sharpshooter plot to visualize if DSW is useful by predicting the generalization
ability using the classification results on the training set.

Let us take algorithm A and algorithm B as an example. In detail, we use
the LOOCV performance on the training set of algorithms A and B to compute
the expected performance gain: training accuracy of A/training accuracy of B ;
we use the accuracy on the test set to compute the actual performance gain:
test accuracy of A/test accuracy of B . The result for all compared methods and
DSW is presented in Figure 11. The false positive (FP) region represents datasets
on which we predict a performance gain but actually observe a performance
reduction. The FP region is not desired. From Figure 11, we observe that 4.7%
points are in the FP region of DSW vs. ED; 8.2% points are in the region of FP
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Fig. 12. Critical difference diagram for compared methods. The numerical values
indicate the average rank on 85 UCR datasets. The difference is significant for
algorithms with non-overlapped CDs. DSW performs significantly better than
ED, DTW, cDTW, and DDTW according to the Nemenyi test under the signif-
icance level 0.05. It is not surprising to find DSW is not significantly different
from CID-DTW, as CID-DTW has employed optimal warping window and com-
plexity information. The WDTW also fine tunes the alignment on the training
data.

for DSW vs. DTW. This result indicates that we have a very low probability to
be over-optimistic on our prediction.

Statistical Analysis To provide more insights into the performance of DSW
compared with ED and DTW, etc., we perform statistical significance test for
the difference of all approaches. In detail, the generalization error rates of the
compared methods on all 85 UCR datasets are first converted into ranks. The
algorithm with the minimum generalization error obtains the rank of 1 and the
second minimum gets the rank of 2 etc. The lower rank indicates better perfor-
mance. Then we average the ranks across all datasets. We employ the Friedman
test to compare the different distance measurements. The Friedman test indi-
cates that the three distance measurements indeed behave differently. A post-hoc
pairwise Nemenyi test is performed to evaluate the significance of the rank dif-
ferences. The result is demonstrated in Figure 12. The main observation is that
DSW gets the lowest rank and is the best distance measurement of the compared
methods for classification. We also observe that our method is significantly better
than most compared methods.

Up till now, we have compared DSW with Euclidean distance and DTW-
related methods to demonstrate the effectiveness of our method for sequence
classification. Next, we will empirically analyze the influence of the relating prop-
erties of reservoir model on DSW.

4.4. What is happening in the reservoir?

The skeptical readers may be wondering how a randomly generated reservoir
network could achieve excellent classification performance. In this subsection,
we are going to empirically uncover some insights about the reservoir network
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Fig. 13. Generalization error with varying reservoir scalings. The original error
rates on each dataset have been divided by the maximal error rate for better
visualization. The top row shows the result of fast oscillating sequences and the
bottom row shows the result of the smooth sequences. It demonstrates that (1)
oscillating sequences usually need a small scaling and smooth sequences usually
need a large scaling (see green circle); (2) local discriminative features need small
scaling and global discriminative features need large scaling (see red rectangle).
In addition, we plot the DTW generalization error for comparison. Note that
DSW’s parameters are set arbitrarily without optimizing by cross-validation.
Despite the pessimistic setup of DSW, on most datasets DSW maintains lower
error than DTW.

of DSW. In particular, we will analyze the spectral radius scaling of reservoir
(4.4.1), the input connection weights (4.4.1), the predictability of reservoir for
input sequences (4.4.3), the size of reservoir (4.4.4) and the input dimensionality
(4.4.5). Our strategy to evaluate these properties is to fix the other parameters
and only vary the target property. The generalization error of DSW is calculated
by the 1NN classifier.

4.4.1. Spectral Radius Scaling

Previous studies have revealed that the spectral radius scaling should be less than
one to guarantee echo state property [33]. That is, sequence modeling should be
not sensitive to the initial value of the sequence. In particular, we have R =
scaling ×R/max(eig(R)), where R is the reservoir weight matrix [33].

To study the effect of the scaling on the classification performance of DSW,
we fix the reservoir parameters and then vary the spectral scaling parameter. In
detail, let ri = 0.2, rc = 0.5, rj = 0.4, N = 5 and jumplength = 2. The scaling
parameter varies from 0.1 to 1.9 with step size 0.2.

We artificially divide some UCR datasets into two groups according to whether
the sequences are fast oscillating ones or slowly changing ones. Fast oscillating
series changes rapidly over time, while the opposite is slowly changing series that
evolve smoothly over time. The separation of the two groups is performed visu-
ally since it is difficult to give a definition to separate them. The aim of doing
so will be clear later.

Generally, there is a trade-off between the input and the previous state in
learning the current state representation. In particular, smaller scaling parameter
weights the previous state less and gives more importance to the current input,
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Fig. 14. State sequences (colored) of original sequences (black) in GunPoint
dataset. The scaling parameters are 0.1(left) and 1.1(right). The box shows the
local discriminative features of two sequences (upside for class 1 and bottom for
class 2). Small scaling is beneficial for finding local discriminative features. Large
scaling is good for global discriminative features. Remind that the discriminative
features for GunPoint dataset lie in a local area (see the box). The figure demon-
strates that small scaling strengthens the discriminative features (left). Yet large
scaling makes the discriminative features weaken thus hides them (right).

resulting in short short-term memory [33]. On the opposite, large scaling endows
more influence to the previous state, which leads to long short-term memory.
Oscillating sequences usually need a short short-term memory to model the fast
dynamics. Thus small scaling parameter is preferred. Smooth sequences warrant
a long short-term memory to take into account far earlier time points. It usually
needs a larger scaling parameter.

Figure 13 presents the result of the generalization error rates varying with dif-
ferent scalings. The upside row is for oscillating series and the downside row is for
smooth series. It is clear from Figure 13 that severely oscillating sequences usually
require a small spectral scaling, while sequences with slow dynamics need a larg-
er scaling. However, GunPoint dataset and ShapeletSim dataset show contrary
result. For example, on Gun-Point dataset, which contains smooth sequences,
yet the classification result is optimal when the scaling is small. ShapeletSim is
a dataset which contains oscillating sequences but warrants a large scaling.

We examine closely on GunPoint dataset. Figure 14 explains the observation.
The GunPoint dataset contains two classes that differ from each other by a small
region, i.e. taking a gun or no gun, as introduced in Section 1. The reservoir with
a small scaling memory nearby points when converting time points into states.
Therefore, the discriminative features are discovered. According to Figure 14,
for a small scaling parameter, the reservoir provides high dynamics enlarging
the minor difference. On the other hand, when the scaling parameter is large,
the reservoir representation is more smooth, hiding the small difference between
two classes. To make the experiment reproducible, we have fixed the reservoir
parameter as above mentioned.
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Fig. 15. Generalization error with varying input weights. The original error rates
on each dataset have been divided by the maximum error rate for better vi-
sualization. The top row shows the result of fast oscillating sequences and the
bottom row shows the result of the smooth sequences. It demonstrates that (1)
oscillating sequences usually need a large input weight and smooth sequences
usually need a small input weight (see green circle); (2) local discriminative fea-
tures need a small input weight and global discriminative features need a large
input weight (see red rectangle). In addition, we plot the DTW generalization
error as a comparison.

ShapeletSim dataset contains two classes of sequences, which oscillate severe-
ly. The two classes are generated with two frequencies respectively, which is the
main discriminative feature. The within-class sequences differ from each other by
a phase shift, which results in their different shapes. To capture the inter-class d-
ifference, DSW needs long short-term memory to distinguish the two frequencies,
thus the result (Figure 13) shows it performs best when the scaling is relatively
large.

We find two main results in this experiment: (1) Large scaling contributes
to long short-term memory and small scaling contributes to short short-term
memory. In DSW, this can be a guideline in designing reservoir for modeling
sequences. (2) When the discriminative features concentrate on a small region of
sequences, small scaling is preferred to strength them; when the discriminative
features are global structures, large scaling is useful.

To summarize, for classification, the key concern is to discover the inter-class
discriminative features. Normally, despite the specific warrants of some datasets,
on most datasets, it is observed that fast oscillating dynamics benefit from small
scaling parameter and more smooth sequences need larger scaling parameter.

4.4.2. Input Weight

We fix the reservoir parameters as the same for the previous subsection. The
input weight varies from 0.1 to 1.9 step by 0.2. Figure 15 demonstrates the results.
It shows that small input weights are helpful for long short-term memory and
large input weights for short short-term memory. This observation is consistent
with the result of spectral scaling.
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Fig. 16. The correlation between predictability of reservoir network and the gen-
eralization error rate of DSW. For visualization, the predictability and general-
ization error are normalized to have zero mean and unitary standard deviation.

4.4.3. The Predictability of Reservoir Model

We employ the predictability of readout layer as a proxy for how well the state
space representation approximates the original sequences.

The reservoir model is trained to approximate the function mapping from
input sequences to output sequences. Define the predictability of a reservoir as
the difference between the empirical output and true output. To provide more
insights into the reservoir model in DSW, we analyze the relationship between
the predictability on training set and classification performance on test set. We
train the reservoir model using one-step forward prediction. Ridge regression is
employed to learn the output weights [3, 33]. The ridge regression parameter
is selected in {10−5, 10−4, · · · , 10} by 5-fold cross validation [3]. In detail, we
run 10 repetitions for each of the 85 UCR datasets. The reservoir network is
regenerated randomly every time. The predictability and generalization error of
every network is recorded. We then normalize the two values to have zero mean
and unit standard deviation.

By doing so, we can use the predictability of the network on training set
as an indication of the classification performance on test set. We examine the
relationship between the predictability on the training set and the classification
error rate on test set. Figure 16 plots the correlation between these two values
on all datasets. The Pearson correlation coefficient is 0.3342, which indicates
these two variables are indeed correlated. Therefore, for DSW, it is important to
obtain good classification performance by having a reservoir network that can
approximate the original data well.

4.4.4. The Size of Dynamic Reservoir

The number of neurons in the reservoir has an influence on the memory capacity
of reservoir models [33]. Large reservoir provides more nonlinearity and dynamic-
s. To study how the reservoir size affects DSW, we do experiments on 42 old UCR
time series datasets with different reservoir size, ranging in{5,10,15,20,25,30,40,50,
60,70}. We fix the reservoir parameter as ri = 0.2, rc = 0.3, rj = 0.4, N = 5
and jumplength = 2. On each dataset, we obtain a set of generalization error
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Fig. 17. The average rank on 42 old UCR time series datasets with respect to
the reservoir size (upside). It demonstrates that small reservoir size is enough to
yield good classification results for DSW. The bottom row presents the running
time of DSW w.r.t. reservoir size.

rates corresponding to different reservoir sizes. The error rates are then sorted
so that each value associates a rank. We record the average rank of classification
performance on each reservoir size.

Figure 17 presents the experimental result. The upside row is the average rank
for different reservoir sizes. Surprisingly, it shows that the reservoir size has very
limited influence on the performance of DSW. The performance is good when
the reservoir size is relatively small. In particular, it performs very well when
the reservoir size is 5. It is reasonable to observe this result, since our task is to
discriminate the examples in different classes instead of modeling the nonlinear
dynamics. The bottom row presents the computational time on Beef dataset for
different reservoir size. We observe that with a larger reservoir, more compu-
tational time is needed. DSW is able to improve the classification performance
with tolerable computational cost.

Note that in previous literature [33, 36], the size of the reservoir is usually
set as hundreds of neurons to capture the generating mechanism. In our study,
we concern different aspects of sequences. The reservoir in our work is mainly to
provide versatile dynamic features to help classification. As a result, we do not
need too large reservoir size.

4.4.5. Input Dimensionality

The dimensionality of input influences the resulting state sequences. For n input
dimensionality, it means we feed n successive time points as the input into the
reservoir to obtain an updated state. We extend the original sequence by repeat-
ing the end of sequences n times so that the state sequences are of the same
length as the original sequences.

We perform experiments on 42 old UCR datasets using different input dimen-
sionality. On each dataset, the input dimensionality is selected as 1,2,3, and 4.
Then using the selected input dimensionality, we learn reservoir state sequences.
We have fixed the reservoir parameters during the experiment to guarantee only
the input dimensionality is varied. The parameters are the same as that of sub-
section 4.4.1. Figure 18 illustrates the average rank of each dimensionality over
all 42 datasets. It clearly demonstrates that input dimensionality 2 achieves the
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Fig. 18. The average rank of generalization error for different input dimension-
ality.

best performance, followed by dimensionality 1. However, for dimensionality 3
and 4 it performs poorer.

We summarize the above experiments.
(1) The classification performance of DSW is influenced by the trade-off be-

tween input weights and spectral radius, and is proportional to the predictability
of the readout layer.

(2) The size of the reservoir network does not show significant influence and
a reservoir size of 5 often yields good performance.

(3) The proper selection of the input dimensionality would lead to better
generalization.

In this paper, the default parameters have been used for all the experiments,
whose performance can be further improved by selecting proper parameters.

5. Person Identification by Typing Dynamics

We evaluate DSW on a real-world application that identifies the operator by
the keystroke dynamics. The dataset [27] contains 548 multivariate time series
describing typing behaviors of 12 different users. Each user is asked to type the
same text to collect the typing behavior. The first 5 typing time series of each
user are employed as the training data (60 in total) and the remaining series are
treated as unseen test data (488 in total). We normalize the time series to have
zero mean and standard deviation.

The reservoir network is randomly generated in DSW and selected by LOOCV
on the training data. The classification result evaluated by the evaluation system
(http://www.biointellig- ence.hu/typing-challenge/task2/) is reported in Figure
19. The table presents the error rate of DTW, PROCESS [27], and DSW. Fol-
lowing [27], we employ the distance between a sequence and the training se-
quences as the feature for the sequence. Thus, each sequence is reformulated
as 60-dimensional vectorial data. DSW induced features with logistic regression
achieve the lowest error rate. The visualization of training data with this feature
in 2D is performed by t-SNE [41]. In t-SNE, the initial dimention=10, perplex-
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Fig. 19. (a): Classification performance of DTW, PROCESS [27], and DSW on
person identification dataset [27]. The warping window of DTW and DSW is not
constrained. The reservoir network is determined by LOOCV on the training
data. 1NN: classification with the distance (DTW or DSW) using 1NN. P 1NN
and P LR: classification using the projected features with 1NN and LR classifier
following [27]. The best result is boldfaced. (b) and (c): Visualizing DTW and
DSW feature in 2D.

ity=4. The figure demonstrates that the DSW feature is more separable than
that of DTW.

6. Conclusion

In this paper, we propose a novel algorithm, DSW, for calculating the distance
between sequences. DSW employs a reservoir network as a general purpose non-
linear temporal filter. The original sequences are first converted into reservoir
state trajectory sequences to capture the autocorrelation dynamic structure in-
formation. The state trajectory sequence provides versatile dynamic features for
classification. Then dynamic programming is performed to find an alignment
between two state sequences. Therefore, points with similar states are matched.

We have conducted extensive experiments to evaluate DSW using both syn-
thetic datasets and benchmark datasets, compared with DTW and its variants.
The experimental results demonstrate that DSW achieves significant perfor-
mance improvement with 1NN classifier. DSW is also empirically demonstrated
to be endowed with better robustness and scalability. The running time of DSW
includes the network training procedure by cross-validation and the alignment
procedure. Similar to the constraint tuning of DTW, with the CV process for
determining the network, DSW need extra training time. The time complexity
of alignment in DSW is predominantly O(LQLC), but can be reduced to linear
time with constraints [11]. Our point here is to provide a novel strategy to con-
sider dynamics as time states for calculating time series distance, rather than
original time domain points. For this purpose, we employ the dynamic states on-
ly and do not refine the align constraints, which could endow DSW with better
classification performance and more efficiency.
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We attribute the performance improvement of DSW to the smoothing ability
of the dynamic temporal filter, that the input history is implicitly stored in the
hidden states of the dynamical system. Possible extensions of this work include:
(1) to provide more efficient optimization methods for the reservoir network in
DSW. (2) to design accelerating techniques for searching alignments in DSW.
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